6

QMS REFERENCE: N/A

Drinking Water Quality Management System

Operational Plan for the A.L. Dafoe & Sandhurst Shores **Drinking Water Systems**

Uncontrolled Printed Copy

REVISED: 2023.01.24

Table of Contents

1 2 3 4 5 6	Introduction Quality Management System Policy Commitment and Endorsement DWQMS Representation DWQMS Document and Records Control Drinking Water Systems	2 3 4 5
ŀ	A.L. Dafoe Drinking Water System Process Description	. 5
	General	. 5
	Raw Water Supply	. 5
	Coagulation / Flocculation / Sedimentation	. 6
	Filtration	. 6
	Disinfection (Chlorination)	. 6
	Process Waste Residuals Management	7
	Distribution System and Elevated Storage Tanks	. 7
	Sample Analysis	7
F	Process Diagrams	. 8
A	A.L. Dafoe Purification Plant	.9
	Napanee Water Distribution Subsystem	10
ç	Source Water Overview	11
	General	11
	Events	11
	Threats	11
	Operational Challenges	11
	Secondary (Contingency) Raw Water Source	12
S	Sandhurst Shores Drinking Water System Process Description	13
	General	13
	Raw Water Supply	13
	Coagulation / Flocculation / Sedimentation / Filtration	14
	Treated Water Storage	14
	Disinfection (Chlorination)	15

Process Waste Residuals Management15
Sample Analysis16
Process Diagrams
Sandhurst Shores Water Treatment Package Plant Schematic
Sandhurst Shores Distribution System19
Source Water Overview21
General21
Events
Threats
Operational Challenges21
7 Risk Assessment
A.L. Dafoe Drinking Water System: Summary and Classification of Identified Hazards
A.L. Dafoe Drinking Water System: Summary of Risk Assessment and Critical Control Point Determination
Sandhurst Shores Drinking Water System: Summary and Classification of Identified Hazards
Sandhurst Shores Drinking Water System: Summary of Risk Assessment and Critical Control Point Determination
Controlled Conditions for Critical Control Points
9 Organizational Structure, Roles, Responsibilities and Authorities
Town of Greater Napanee Council - Owner / Operating Authority
Chief Administrative Officer (CAO) – Owner / Operating Authority
General Manager of Infrastructure Services – Owner / Operating Authority
Director of Environmental Services - Top Management
Deputy Director of Environmental Services
Operations Manager
Operations Manager

E	ngineering Technologist	41
U	tilities Office Administration and Temporary Staff	
10	Competencies	
Sa	atisfying Competencies	
11	Personnel Coverage	
S	ummary Table of WTP Personnel Coverage	45
A.	.L. Dafoe Drinking Water System	45
Sa	andhurst Shores Drinking Water System	
W	/eekend & Holiday Shifts	45
A	larm System	45
R	ationale	
12 13	DWQMS Communications Essential Supplies and Services	
Q	uality of Supplier Products and Services	
14 15	Review and Provision of Infrastructure and Resources Infrastructure Maintenance, Rehabilitation and Renewal	
PI	lanned Maintenance	
U	nplanned Maintenance	
R	enewal / Capital Upgrades	
Lo	ong-Term Infrastructure Upgrade Forecast	
16 17 18	Sampling and Monitoring Measurement and Recording Equipment Calibration and Maintenance Emergency Management	
E	mergency Contact List	
19 20 21	Internal Audits Management Reviews Continual Improvement	

1 Introduction

Quality Management can be defined as the policy and associated organizational structures, procedures, responsibilities, and evaluation measures that ensure the capability of delivering a product to specified standards. The use of Quality Management systems by modern industry has steadily increased over the last 30 years, since the development of the first ISO standard in 1986. Whether implemented voluntarily or as a requirement of suppliers to larger manufacturers, Quality Management has repeatedly proven beneficial in terms of accountability, quality control, efficiency, and productivity.

Although historically used on a voluntary basis by some progressive water utilities, the idea of mandated province-wide implementation of a Quality Management Standard by drinking water system owners originated as a recommendation in the Part Two Report of the Walkerton Inquiry. In summary, Recommendations 51 through 57 from the report state the following:

- Drinking water systems should be operated by authorities that are accredited based on successful third-party audits conducted by a certified accrediting body.
- The Ministry of the Environment, Conservation and Parks, in partnership with other relevant stakeholders, should develop a Drinking Water Quality Management Standard against which the third-party audits will be conducted.
- All municipalities should prepare Operational Plans describing how the requirements of the Quality Management Standard are achieved.

The Provincial Government has committed to implementing all recommendations tabled by the report author, The Honourable Dennis R. O'Connor.

In accordance with those recommendations, this Operational Plan serves as a Quality Management System Guidance Manual that describes the methods by which the Town of Greater Napanee implements Quality Management. The Plan is written to meet or exceed the requirements of the Ministry of the Environment, Conservation and Parks prescribed standard and is applicable to the management and operation of those works described in Section 6.

2 Quality Management System Policy

The Town of Greater Napanee is committed to supplying a safe, consistent drinking water supply, and to complying with all applicable regulatory requirements. We strive to achieve these goals through the implementation of a management system comprised of documentation that demonstrates risk-based treatment process evaluation, staff competency, open communications, workplace safety and appropriate emergency response measures.

The managers and employees of the Town of Greater Napanee who are directly involved in the supply of drinking water, share in the responsibilities of implementing, maintaining and contributing to the continual improvement of the Drinking Water Quality Management System. **DWQMS** Operational Plan

3 **Commitment and Endorsement**

The Town of Greater Napanee supports the implementation, maintenance, and continual improvement of a Drinking Water Quality Management System (DWQMS) for the A.L. Dafoe Drinking Water System and the Sandhurst Shores Drinking Water System, as documented in this Operational Plan. Endorsement by the Owner, (represented by the Town of Greater Napanee Chief Administrative Officer and/or one Councillor and/or the General Manager of Infrastructure Services), and Top Management, (represented by the Director of Environmental Services) acknowledges the need for and supports the provision of sufficient resources to maintain and continually improve the DWQMS.

Endorsement of this Operational Plan is found below. The endorsement is with respect to the generality of its content. The Owner and Top Management will be required to sign a new endorsement within the first Quarter of a new term of Council or when major revisions are made.

1 Nor 2023

Mect 2023 Date

March 1,2023

Town of Greater Napanee, CAO

Town of Greater Napanee, Member of Council

General Manager of Infrastructure Services

Director of Environmental Services

Uncontrolled Printed Copy

REVISED: 2023.01.24

4 **DWQMS** Representation

Top Management represented by the Director of Environmental Services hereby designates the Deputy Director of Environmental Services as the Drinking Water Quality Management System (DWQMS) Representative. In the absence of the Deputy Director of Environmental Services, the Utilities Operations Manager will fulfill the role as the back-up DWQMS Representative. Top Management and the Designated Representative(s) acknowledge that, regardless of other responsibilities, the Representative(s) shall:

- 1. administer the DWQMS by ensuring that processes and procedures needed for the DWQMS are established and maintained,
- report to Top Management the performance of the DWQMS and any need for improvement,
- ensure that current versions of documents required by the DWQMS are being used at all times,
- ensure that personnel are aware of all applicable legislative and regulatory requirements that pertain to their duties for the operation of the subject drinkingwater system, and
- 5. promote awareness of the DWQMS throughout the Operating Authority.

2023.03.01 Date

2023.03.01

Date

Director of Environmental Services

Deputy Director of Environmental Services

Utilities Operations Manager

2023.03.01

Date

5 DWQMS Document and Records Control

Details regarding DWQMS document identification, retention, storage and disposal are contained within the Document Control Procedure (GEN-P1). DWQMS records are retained according to the Records Control Procedure (GEN-P2).

6 Drinking Water Systems

A.L. Dafoe Drinking Water System Process Description

General

The A.L. Dafoe Purification Plant and distribution system provides a potable water supply to the residents and businesses of the Town of Napanee. The facilities include a Class III conventional water treatment plant having an approved capacity of 10,450 m^3/d , and a Class II water distribution system which are owned and operated by the Town of Greater Napanee.

Source water for the treatment process is drawn from Lake Ontario, a surface water source, located approximately 18 km south of the town. Potentially pathogenic organisms are removed from the raw water source by the following processes:

- 1. Pre-chlorination
- 2. Coagulation / flocculation / sedimentation
- 3. Filtration
- 4. Post-chlorination (primary disinfection)
- 5. Distribution system chlorine residual (secondary disinfection)

Raw Water Supply

Water is drafted from Lake Ontario and pumped through a 500mm pipeline to a reservoir located at the northeast corner of County Road 8 and Golf Course Lane. Sodium hypochlorite is added at the Lake Ontario intake for zebra mussel control and to provide initial disinfection. The addition of sodium hypochlorite to the raw water supply is referred to as pre-chlorination, and serves primarily as a measure to prevent microbiological growth within the raw water pipeline and reservoir. Pre-chlorine residual is measured continuously in the raw water entering the treatment facility.

If circumstances arise that prevent the transfer of raw water from Lake Ontario, the purification plant can be configured to draw raw water from the Napanee River. Raw water volumes drawn from the surface water source are measured at the inlet to the treatment process.

Coagulation / Flocculation / Sedimentation

Water flows by gravity from the raw water reservoir through two 150mm electrically actuated valves to the water treatment plant. Alum (hydrated aluminum sulphate) is added to the incoming raw water upstream from the flocculation basin to promote settling and enhance filtration. Rapid mixing of the alum with the raw water occurs as the raw water passes through an in-line static mixer. The alum-water solution enters a baffled flocculation basin where gentle mixing promotes the formation of flock masses which attract and gather debris present in the source raw water. Flow is then directed into sedimentation tanks where the flock is provided sufficient detention time for settling. Supernatant (the clear liquid above the settled flock) overflows the sedimentation tank effluent weir to the top of the dual media filters.

Most of the particulate matter that was present in the raw water is captured by the flock particles and removed by gravity in the sedimentation tanks, however, during normal operations, some flock passes from the sedimentation tanks to the top of the filters.

Filtration

The A.L. Dafoe Purification Plant has two parallel dual media filters. The top layer of the filters is granular activated carbon (GAC). The filter media below the GAC layer is sand. The GAC is effective in removing organic compounds, many of which are responsible for unpleasant taste and odour sometimes experienced during the warmer months. Residual particulate matter (flock) carried over from the sedimentation process is trapped primarily in the sand portion of the filter. As debris accumulates in the filters and limits flow, they must be cleaned by reversing the flow (referred to as backwashing) and directing the backwash to a waste holding tank.

Turbidity, a measure of the cloudiness of water, is measured continuously in the effluent from each filter to monitor the effectiveness of the filtration process. If the turbidity rises above a set point value, an alarm warns staff that corrective actions are needed.

Filtered water passes through the filter under-drain into the treated water clearwells. The clearwells are baffled tanks located beneath the filters that are used to store filtered water and to provide disinfectant contact time.

Disinfection (Chlorination)

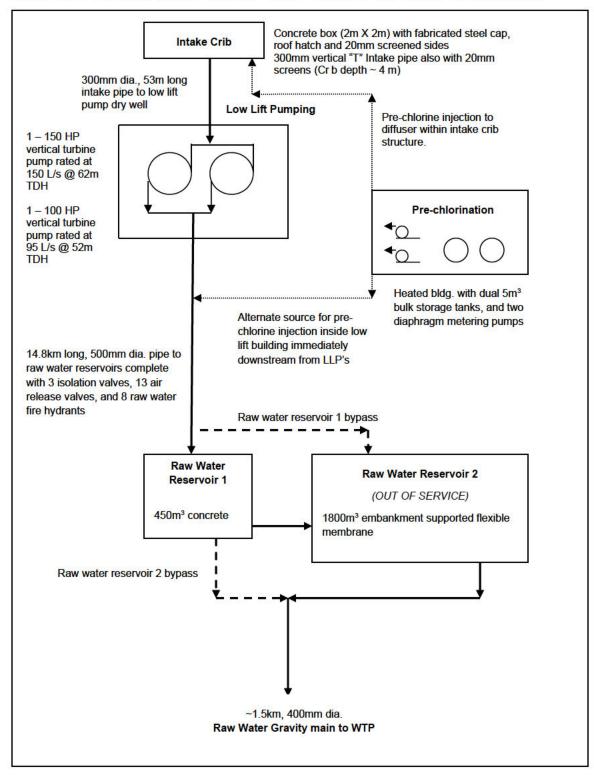
Primary disinfection (post-chlorination) occurs following filtration, immediately upstream from the treated water clearwells. Primary chlorination disinfects the filtered water, ensuring that any potentially pathogenic organisms that may remain after sedimentation and filtration are rendered harmless prior to distribution to consumers. Disinfection consistency is ensured by continuous monitoring of chlorine residual in the treated water leaving the facility. If the residual drops below a safe level, pumping to the distribution system is automatically interrupted and an operator is notified to correct the problem.

Secondary disinfection is accomplished by adding sufficient chlorine at the purification plant to maintain a residual throughout the entire distribution system. Secondary disinfection prevents growth of micro-organisms within the distribution system.

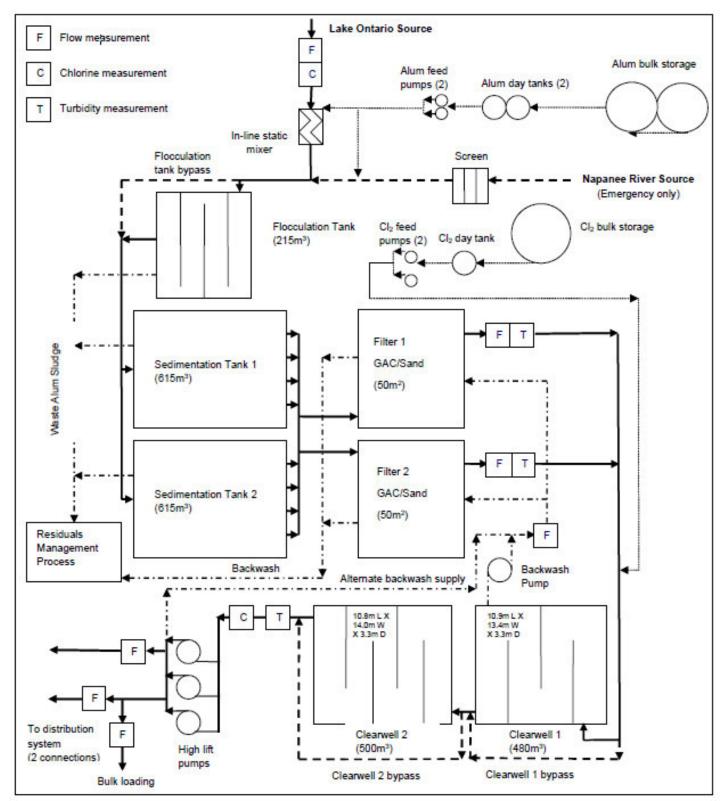
Process Waste Residuals Management

Filter backwash water and accumulated alum flock from the sedimentation tanks are directed to an equalization tank from where they are pumped to a residuals thickening process. The sludge collected within the thickening process is pumped to the municipal sanitary sewer. The clarified effluent from the thickener is de-chlorinated and discharged to the Napanee River.

Distribution System and Elevated Storage Tanks


Treated water is pumped from the clearwells into the distribution system. Distribution piping typically ranges in size from 150 mm to 450 mm, and may consist of cast iron, ductile iron, concrete, or PVC, depending on the location and date of installation. Two pressure booster stations, (one at the south end of town on McCabe Street and the other at the north end of town on Community Road), are used to ensure adequate system pressure in areas of higher elevation or locations significantly removed from the plant and elevated storage tanks. Typical system pressure ranges from 45 psi to 80 psi. Two elevated storage tanks (one at the north end of East Street and the other at the top of the hill on Highway 2) are integral components of the distribution system. The purpose of the storage tanks is to provide relatively constant system pressure and a reserve volume of water for community fire protection.

Sample Analysis


Provincial regulations dictate sampling and monitoring requirements for the system. Water quality is tested throughout the treatment process and from dedicated sampling hydrants located at the extremities of the distribution system. Where required by regulation, samples are submitted to an accredited laboratory for analysis.

Process Diagrams

A.L. Dafoe Drinking Water System - Lake Ontario Raw Water Transmission

A.L. Dafoe Purification Plant

Napanee Water Distribution Subsystem

Sample

SCALE NTS DRAWN BY FILE

TOWN OF GREATER NAPANEE

Napanee Distribution System

Greater Napanee

Source Water Overview

General

The primary raw water source for the A.L. Dafoe Drinking Water System is Lake Ontario. Lake Ontario water is typically very low in turbidity (<1 NTU), low in colour, slightly basic, and marginally hard (~120mg/L as CaCO₃) due to the local limestone geology. Temperature fluctuates significantly throughout the seasons ranging from approximately 4 Celsius in the winter to over 20 Celsius during the summer. Chemical and bacteriological analysis of the raw water indicates a source of relatively good quality.

Events

Seasonal changes in raw water temperatures cause vertical turnover of the lake water during spring and fall. Turnover typically takes place over a relatively short duration (~2 – 7 days). During that period, settled solids from the lake bed are re-suspended resulting in increased raw water turbidity. Changes in raw water temperature will also have impacts on treatment unit process performance (clarification, disinfection).

Optimal treatment may require adjustments to treatment chemical dosages (disinfectants and coagulants) in response to raw water temperature and turbidity fluctuations.

Threats

Potential sources of raw water contamination include agricultural runoff, spills from nearby highway traffic mishaps, waste from commercial marine freighters and recreational watercraft, and potential spills from the adjacent power plant, the Lennox Generating Station.

The Lake Ontario intake pipe is approximately 50 metres offshore, at a depth of less than 3 metres to the top of the crib. Due to the relatively near shore and shallow positioning of the crib, the intake is susceptible to potential accidental damage from marine craft or ice, and is also vulnerable to intentional acts of vandalism or contamination. Some risk of plugging of the intake screen by Zebra Mussel growth or from other miscellaneous debris in the water also exists.

Operational Challenges

Lake Ontario provides high quality source water, which is, for the most part consistently low in bacteriological contamination and turbidity. While operator response is sometimes needed for events of elevated turbidity and temperature changes, the most significant challenge related to the source water is the vulnerability of the single 16 kilometre transmission line through which the water is transported to the treatment facility. Repairs to pumping equipment or the transmission line results in an interrupted supply to the treatment facility. It is essential that the communications and monitoring equipment from the remote low lift pumping station and raw water reservoir remain in good working order so that problems are identified quickly. Preventive and breakdown maintenance must be carefully planned to minimize the interruption to raw water supply. An inventory of spare parts and repair equipment must be maintained to facilitate rapid restoration of raw water pumping.

The contingency source from the Napanee River should be used only under extreme circumstances as river quality is inferior and therefore more difficult to treat. Additionally, rapid mixing of the alum with the raw water is not possible when using the river source, resulting in less than ideal conditions for coagulant performance.

Secondary (Contingency) Raw Water Source

The secondary intake for the plant is located on the Napanee River immediately upstream from the falls at Springside Park and serves as a contingency supply in the event that flow is interrupted from the primary Lake Ontario source.

River contamination risks include municipal storm water runoff, agricultural runoff, leakage from rural sanitary systems, and industrial discharges from the Strathcona Paper Mill located approximately 5 km upstream. Napanee River water is highly coloured from naturally occurring organic substances, which leach into the water from native watershed flora. Turbidity and temperature fluctuations are more pronounced from the river source when compared to the primary Lake Ontario source. Operators must be prepared to make appropriate changes to coagulant and disinfectant dosages if the contingency source is utilized.

Use of the contingency supply is considered only under extreme circumstances given the process related problems associated with treating a source water of inferior quality.

Sandhurst Shores Drinking Water System Process Description

General

The Sandhurst Shores Water Treatment Plant and distribution system provides a potable water supply to the residents of Sandhurst Shores. The facilities include a Class II chemically assisted filtration package treatment unit (design capacity of 372 m³/d), and a Class II water distribution system, which are owned and operated by the Town of Greater Napanee.

Source water for the treatment process is drawn from Lake Ontario, a surface water source. Potentially pathogenic organisms are removed from the raw water source by the following processes:

- 1. Pre-chlorination
- 2. Coagulation / flocculation / sedimentation
- 3. Filtration
- 4. Post-chlorination (primary disinfection)
- 5. Distribution system chlorine residual (secondary disinfection)

Raw Water Supply

Water is drafted from Adolphus Reach, Lake Ontario through a 250mm diameter intake pipe which extends approximately 285 metres into Lake Ontario, submerged to a depth of about 12 metres. Sodium hypochlorite is added at the intake for zebra mussel control and to provide initial disinfection. The addition of sodium hypochlorite to the raw water supply is referred to as pre-chlorination, and serves primarily as a measure to prevent microbiological growth within the raw water pipeline and reservoir. Pre-chlorine residual is measured continuously in the raw water entering the treatment facility.

Screens at the plant inlet prevent any large debris from passing into the treatment process. After passing through the screens, raw water flows into a tank referred to as a low lift well from where it is pumped to the treatment process. The low lift pumps are controlled by the volume of treated water stored at the plant. As community use lowers the level of the treated water storage tanks, the low lift pumps are activated to replenish the used volume. The flow rate of raw water from the surface water source is measured immediately upstream from the inlet to the treatment process.

Coagulation / Flocculation / Sedimentation / Filtration

The Sandhurst Shores treatment process combines coagulation, flocculation, sedimentation, and filtration in one large partitioned steel tank. (See diagram on following page) This integrated process design, which is common in smaller communities, is referred to as a package plant. Within the package plant, raw water first enters a vertical cylinder referred to as a draft tube. The draft tube contains a turbine that creates a rapid mixing zone where coagulation is induced by the addition of alum and polymer. As the coagulating chemicals mix with the water, flocculation (gathering together) of suspended particles occurs. As flow progresses downstream from the draft tube, velocity decreases within the flocculation zone where baffles gently mix the flocculated solids causing them to collide and join together to form larger clumps prior to entering the settling compartment.

The settling compartment contains a series of inclined hollow 50mm plastic tubes. The inclined tubes are designed to maximize the rate at which the flocculated solids settle to the bottom of the tank. The accumulated settled solids are periodically drained from the bottom of the settling compartment to a waste holding tank. The relatively clear water at the top of the settling compartment flows into the dual media (sand and anthracite) filters. The filters remove particulate matter that may remain in suspension following the settling compartment. The filters require regular cleaning which is accomplished by a process referred to as backwashing. Backwashing temporarily reverses flow through the filter and discharges the wash water to a waste holding tank.

Turbidity, a measure of the cloudiness of water, is measured continuously in the effluent from the filters to monitor the effectiveness of the filtration process. If the turbidity rises above a set point value, the low lift pumps automatically turn off to prevent the passage of turbid water to the treated water storage tank. Elevated filtered water turbidity also activates an alarm to alert staff that corrective actions are needed.

Filtered water passes through the filter under-drain nozzles into the treated water reservoirs located below the package plant.

Treated Water Storage

Treated water storage is comprised of four concrete tanks. The first two reservoirs located immediately downstream from the package treatment process have a combined capacity of approximately 334m³ and operate in parallel configuration. Either tank can be isolated and removed from service. The third tank has a volume of approximately 100m³ and is the location of chlorine injection for primary disinfection. Treated water then flows to the 127m³ high lift pump suction well from where it is conveyed to the distribution system by three pumps, one vertical turbine and two submersible.

The high lift pumps are controlled by a programmable logic controller and variable frequency drive that changes pump speed to meet varying system demand while maintaining consistent system pressure. Pressure surges and dips are dampened by two 1000L hydro-pneumatic tanks connected to the high lift pump discharge header. The plant is also equipped with a fourth high lift pump that is sized to satisfy fire flow demand if needed.

Disinfection (Chlorination)

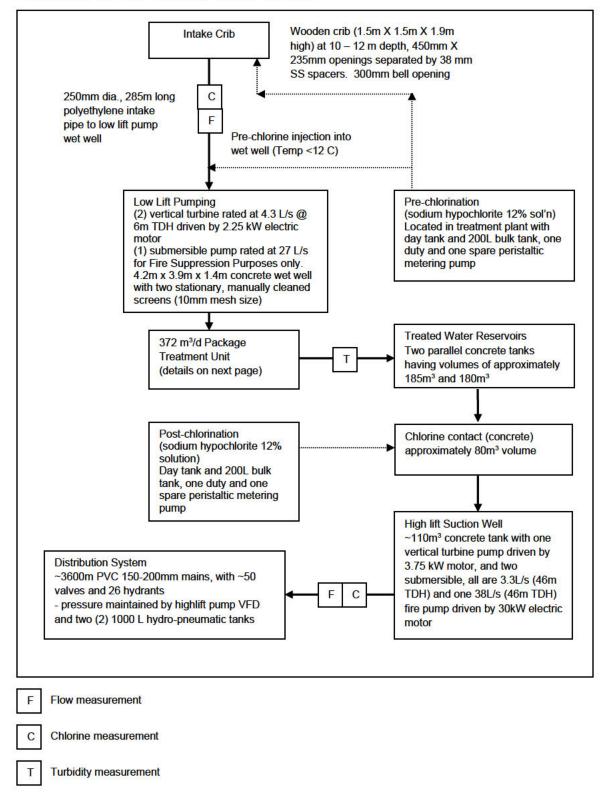
Primary disinfection (post-chlorination) occurs following filtration, immediately upstream from the high lift pump clearwell. Primary chlorination disinfects the filtered water, ensuring that any potentially pathogenic organisms that may remain after sedimentation and filtration are rendered harmless prior to distribution to consumers. Disinfection consistency is ensured by continuous monitoring of chlorine residual in the treated water leaving the facility. If the residual drops below a safe level, pumping to the distribution system is automatically interrupted and an alarm is activated to alert an operator to correct the problem.

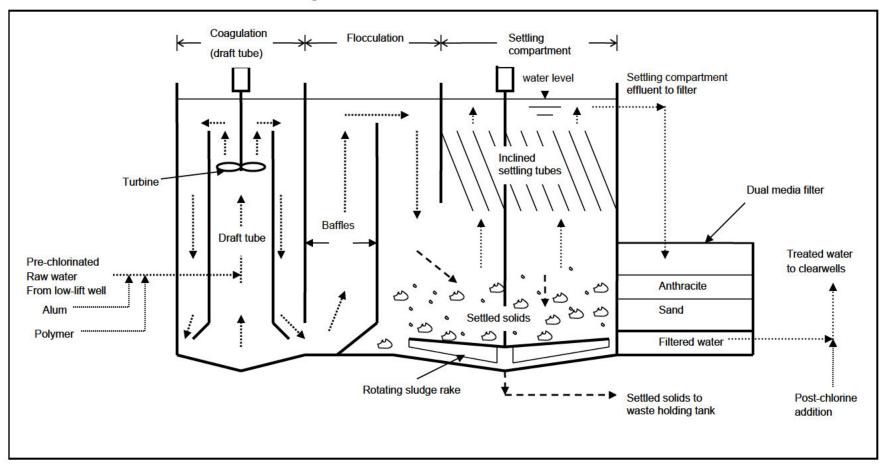
Secondary disinfection is accomplished by adding sufficient chlorine at the treatment plant to maintain a residual throughout the entire distribution system. Secondary disinfection prevents growth of micro-organisms within the distribution system. Distribution system chlorine residual is monitored continuously at a public building located in the northeast quadrant of the Sandhurst Shores distribution system.

Distribution System

Treated water is pumped from the clearwells into the distribution system. The Sandhurst Shores distribution system consists of approximately 3,600 metres of PVC piping, ranging in size from 150mm to 200mm. There are approximately 50 valves and 26 hydrants located within the distribution system. Three dedicated sampling hydrants are installed at the far reaches of the system for water quality sampling.

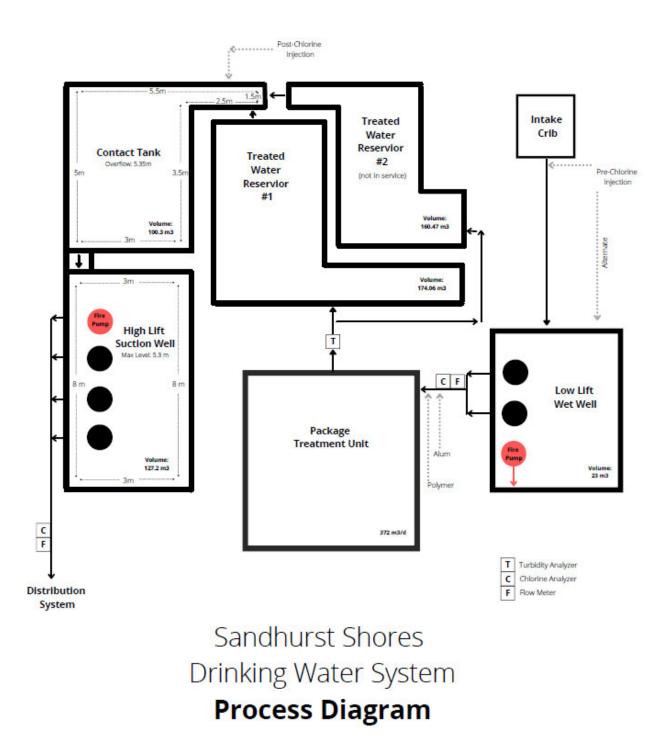
Process Waste Residuals Management


Filter backwash water and accumulated alum flock from the sedimentation tanks are directed to waste holding tank. Suspended solids in the waste tank settle to the bottom portion of the tank from where they are periodically pumped into a tanker truck and hauled to the municipal sanitary sewer in Napanee to receive further treatment. The clarified effluent from the top portion of the waste tank is discharged to a sub-surface exfiltration pit located immediately west of the plant.


Sample Analysis

Provincial regulations dictate the sampling and monitoring requirements for the system. Water quality is tested throughout the treatment process and from dedicated sampling hydrants located at the extremities of the distribution system. Where required by regulation, samples are submitted to an accredited laboratory for analyses.

Process Diagrams


Sandhurst Shores Drinking Water System



Sandhurst Shores Water Treatment Package Plant Schematic

Sandhurst Shores Distribution System

Source Water Overview

General

The primary raw water source for the Sandhurst Shores Drinking Water System is Lake Ontario. Lake Ontario water is typically very low in turbidity (<1 NTU), low in colour, slightly basic, and marginally hard (~120mg/L as CaCO₃) due to the local limestone geology. Temperature fluctuates significantly throughout the seasons ranging from approximately 4°C in the winter to over 20°C during the summer. Chemical and bacteriological analysis of the raw water indicates a source of relatively good quality.

Events

Seasonal changes in raw water temperatures cause vertical turnover of the lake water during spring and fall. Turnover typically takes place over a relatively short duration (~2 – 7 days). During that period, settled solids from the lake bed are re-suspended resulting in increased raw water turbidity. Operators must be prepared to make appropriate plant adjustments to treat the elevated levels of turbidity experienced during turnover events. Changes in raw water temperature will also have impacts on treatment unit process performance (clarification, disinfection). Optimal treatment may require adjustments to treat the mical dosages (disinfectants and coagulants) in response to raw water temperature and turbidity fluctuations.

Threats

Potential sources of raw water contamination include agricultural runoff, spills from nearby highway traffic mishaps, waste from commercial marine freighters and recreational watercraft, and residential area surface water runoff.

Operational Challenges

Lake Ontario provides high quality source water, which is, for the most part consistently low in bacteriological contamination and turbidity. Operator response is needed for infrequent events of elevated turbidity and for making appropriate chemical adjustments associated with seasonal temperature changes.

7 Risk Assessment

The procedure entitled Drinking Water Hazard Analysis and Critical Control Point Determination (GEN-P4), describes the method of hazard identification, risk assessment, and critical control point determination. The procedure consists of four main exercises: hazard identification, risk assessment, critical control point determination, and critical limit identification.

8 Risk Assessment Outcomes

The following table documents the most recent hazard identification exercise conducted for the A.L. Dafoe Drinking Water System. Hazards were identified and categorized according to the Drinking Water Hazard Analysis and Critical Control Point Determination Procedure (GEN-P4).

A.L. Dafoe Drinking Water System: Summary and Classification of Identified
Hazards

Hazard	Emergency (Contingency)	Operational (Procedure)	Measured/ Monitored? (Yes/No)	Comments/ Control Measures
Spill of biological or chemical material into source	x		No	alternate source
Harmful Algae Blooms	x	x	No	Visual inspection, sampling, alternative source
Damage (i.e. traffic) to Lake Station building	x		No	alternate source
Low lift pump failure (x1) – electrical/mechanical		x	Yes	redundancy, alarm
Low lift pump failure (x2) – electrical/mechanical		х	Yes	alarm, alternate source
Low lift discharge valve failure – electrical/mechanical		х	Yes	redundancy
Pre-chlorination pump failure – electrical/mechanical		х	Yes	redundancy
Break in pre-chlorination pipe		x	Yes	alternate point of injection
Pre-chlorine overdose (high concentration)		х	Yes	cont. monitoring, daily checks
Failure of Intake Crib	x		No	alternate source
Break in raw water main	x		No	repair parts, alternate source
Power outage at reservoir		x	Yes	APU
Failure of raw water valves - electrical/mechanical		х	Yes	redundancy/manual ops
Failure of coagulant pump – electrical/mechanical		х	Yes	redundancy, alarm, lockout
Under dosing coagulant		x	Yes	turbidity monitoring, alarm, lockout, flow sensors
Break in coagulant lines		x	Yes	(see above), routine rounds
Blockage of static mixer	x		No	redundancy

Hazard	Emergency (Contingency)	Operational (Procedure)	Measured/ Monitored? (Yes/No)	Comments/ Control Measures
Failure of baffle curtains in coagulation basin	x		No	inspected annually
Turbidity meter malfunction	x		Yes	routine maint./calibration
Filter under-drain failure	x		No	redundancy (2 filters)
Failure of backwash pump – electrical/mechanical		х	No	alternate backwash pump
Failure of filter valves – electrical/mechanical		х	Yes	alarm, manual, redundancy
Filter breakthrough		х	Yes	backwash, redundancy, alarm
Failure of post chlorine pump – electrical/mechanical		x	Yes	redundancy, alarm, lockout
Break in post chlorine lines		x	Yes	redundancy, routine rounds, process alarms, lockout
Overdosing/under dosing post chlorine		x	Yes	alarm, lockout
High lift pump failure (x1) – electrical/mechanical		x	Yes	redundancy
Pressure relief valve failure		x	Yes	routine rounds
Low pressure in distr bution system		x	Yes	alarms, tower, alternate TW storage tank, VFD
Operating without tower		x	Yes	alternate TW storage, VFD, PRV
Security - vandalism, tampering, cyber security		x	Yes	fencing, locks, intrusion alarms, back-up of data
Failure to receive a critical supply		х	Yes	alternate suppliers, agreements
General power outage	х		Yes	diesel generators
Alarm failure	х		Yes	routine rounds, monitoring, signal checked daily
Instrumentation communications failure	x		Yes	manual monitoring / control, alarms
PLC(s) failure	x		Yes	manual monitoring / control, alarms
SCADA failure	x		Yes	redundancy, manual control
Failure of backflow preventers	x		No	Annual Inspections/Maint.

The risk assessment and critical control point determination exercises, also described in the Hazard Analysis Procedure are recorded in the following table.

A.L. Dafoe Drinking Water System: Summary of Risk Assessment and Critical Control Point Determination

Process Step	Description of Hazard	Result	Available Control Measures	Detectability	Severity	Likelihood	Total	Critical / CCP
Raw Water	Low lift pump or discharge valve failure (mech. or elec.)	Loss of lake raw water source	Redundancy; alarms, alternate source – A.L. Dafoe WTP, preventative maintenance; daily inspections, TW storage	2	2	1	5	No
	Sudden change in raw water characteristics	Potentially difficult to treat; may require process adjustments	Alarms, in-house lab analysis, process chemical dosage adjustments, alternate source	1	2	3	6	No
Pre- chlorination	Chemical pump failure Break in feed line	Zebra mussel build up causing blockage of raw water intake	Annual inspections, redundancy, alternate point of injection, daily rounds, chlorine residual monitoring	3	2	3	8	No
	Overdose (high conc.)	Poss ble elevated THM conc.	Daily inspections (continuous residual monitoring and daily dosage calculations)	1	3	2	6	No
Raw Water Valves	Valve failure (remaining open or closed)	Plant flooding; loss of raw water source	Redundancy; manual operation, alarmed, alternate RW source	1	1	2	4	No
Coagulant Dosing	Pump failure, under dosing, break in feed line	Interruption to coagulation/floccul ation process resulting in decreased disinfection credit and possible elevated turbidity	Redundancy, continuous turb monitoring, alarm, process lockout, routine daily rounds (calculate dosage and verify turb.)	3	3	3	9	Yes / Turb. CLP
Filtration	Effluent valve failure	Eliminates or decreases capability of filtering and supplying TW	Redundancy, manual operation, alarm	2	2	2	6	No
	Filter breakthrough	Increased turbidity	Redundancy; regular backwashes, alarm	1	3	1	5	Yes / Turb. CLP

Process Step	Description of Hazard	Result	Available Control Measures	Detectability	Severity	Likelihood	Total	Critical / CCP
Post- chlorination	Chemical pump failure, under- dosing, break in feed line	Inadequate disinfection	Redundancy, continuous monitoring, daily rounds (calculate dosage and verify residual) alarm, process lockout	1	3	3	7	Yes / Primary Disinfection CLP
	Overdosing (high conc.)	Health risk if combined residual >3 mg/L combined	Daily rounds (calculate dosage and verify residual) alarm, process lock out	1	2	2	5	No
Distribution	High lift pump failure		Redundancy; preventative maintenance, alarm, TW storage	1	1	2	4	Yes / System Pressure CLP
	Water main break	reak system pressure resulting in risk of backflow contamination	Alarms, AWWA Standard for repairs	2	2	3	7	Yes / System Pressure CLP
	Sustained pressure loss		Alarms, procedures	2	4	2	8	Yes / System Pressure CLP
Security	Vandalism; tampering; cybersecurity	Contamination of drinking water, damage to process equipment, loss of data and records	Intrusion alarms, locks, fencing where appropriate, server backups, paper records	3	5	1	9	No
Suppliers	Failure to receive a critical supply	Unable to provide minimum treatment requirements	Written communications/ agreements, alternate suppliers	1	4	1	6	No
General	Long term impacts of climate change	Water supply shortfall (drought conditions), extreme weather events, sustained extreme temperatures, algal blooms	Monitoring, alternate source	2	3	3	8	No

Sandhurst Shores Drinking Water System: Summary and Classification of Identified Hazards

Hazard	Emergency (Contingency)	Operational (Procedure)	Measured/ Monitored? (Yes/No)	Comments/ Control Measures
Spill of biological or chemical material into source	x		No	hauling potable water to facility
Harmful Algae Blooms	x	x	No	Visual inspection, sampling, alternative source
Low lift pump failure (x2) – electrical/mechanical		x	Yes	alarm, alternate potable water source
Pre-chlorination pump failure – electrical/mechanical		x	Yes	redundancy
Break in pre-chlorination pipe		x	Yes	alternate point of injection
Pre-chlorine overdose (high concentration)		х	Yes	cont. monitoring, daily checks
Failure of intake cr b	x		No	hauling potable water to facility
Failure of coagulant pump - electrical/mechanical		х	Yes	redundancy, alarm
Under dosing coagulant		x	Yes	turbidity monitoring, alarm, flow sensors
Break in coagulant lines		х	Yes	(see above), routine rounds
Turbidity meter malfunction	x		Yes	routine maint./calibration
Filter under-drain failure	x		No	redundancy (2 filters)
Failure of filter valves - electrical/mechanical		x	Yes	alarm, manual, redundancy
Filter breakthrough		x	Yes	backwash, alarm, hauled water
Failure of post chlorine pump – electrical/mechanical		x	Yes	redundancy, alarm
Break in post chlorine lines		x	Yes	routine rounds, process alarms
Overdosing/under dosing post chlorine		х	Yes	alarm
High lift pump failure (x1) - electrical/mechanical		x	Yes	redundancy
Pressure relief valve failure		x	Yes	routine rounds

DWQMS Operational Plan

Hazard	Emergency (Contingency)	Operational (Procedure)	Measured/ Monitored? (Yes/No)	Comments/ Control Measures
Low pressure in distr bution system		x	Yes	alarms, pressure tanks, SOP
Security - vandalism, tampering, cyber security		x	Yes	locks, intrusion alarms, server back-up of data and records
Failure to receive a critical supply		x	Yes	alternate suppliers, agreements
General power outage	x		Yes	diesel generators
Alarm failure	x		Yes	routine rounds, monitoring, signal checked daily
Instrumentation communications failure	x		Yes	manual monitoring / control, alarms
PLC(s) failure	x		Yes	manual monitoring / control, alarms
Failure of backflow preventers	x		No	annual inspection/maintenance

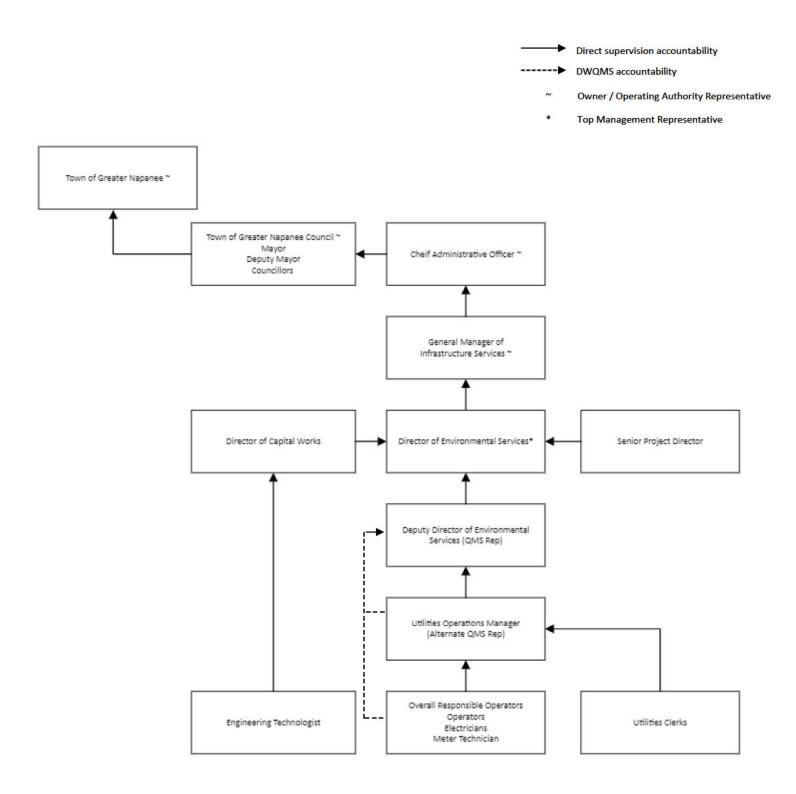
Uncontrolled Printed Copy

The risk assessment and critical control point determination exercises, also described in the Hazard Analysis Procedure are recorded in the following table.

Sandhurst Shores Drinking Water System: Summary of Risk Assessment and Critical Control Point Determination

Process Step	Description of Hazard	Result	Available Control Measures	Detectability	Severity	Likelihood	Total	Critical /CCP
Raw Water	Low lift pump or discharge valve failure (mech. or elec.)	Loss of lake raw water source	Redundancy; alarms, preventative maintenance; daily inspections, ability to haul potable water from alternate source	2	2	1	5	No
	Sudden change in raw water characteristics	Potentially difficult to treat; may require process adjustments	Alarms, in-house lab analysis, process chemical adjustments, alternate source of potable water	1	2	3	6	No
Pre- chlorination	Chemical pump failure Break in feed line	Zebra mussel build up causing blockage of raw water intake	Annual inspections, redundancy, alternate point of injection, daily rounds, chlorine residual monitoring	3	2	3	8	No
	Overdose (high conc.)	Possible elevated THM conc.	Daily inspections (continuous residual monitoring and daily dosage calculations)	1	3	2	6	No
Coagulant Dosing	Pump failure, under dosing, break in feed line	Interruption to coagulation/floc culation process resulting in decreased disinfection credit and possible elevated turbidity	Redundancy, continuous turbidity monitoring, alarm, routine daily rounds (calculate dosage and verify turbidity.)	3	3	3	9	Yes / Turb. CLP
Filtration	Effluent valve failure	Eliminates or decreases capability of filtering and supplying treated water	Redundancy, manual operation, alarm	2	2	2	6	No
	Filter breakthrough	Increased turbidity	Regular backwashes, alarm	1	3	1	5	Yes / Turb. CLP

Process Step	Description of Hazard	Result	Available Control Measures	Detectability	Severity	Likelihood	Total	Critical /CCP
Post- chlorination	Chemical pump failure, under- dosing, break in feed line	Inadequate disinfection	Redundancy, continuous monitoring, daily rounds (calculate dosage and verify residual) alarm	1	3	3	7	Yes / Primary Disinfection CLP
	Overdosing (high conc.)	Health risk if combined residual >3 mg/L combined	Daily rounds (calculate dosage and verify residual) alarm	1	2	2	5	No
Distr bution	High lift pump failure	Possible loss of	Redundancy; preventative maintenance, alarm, TW storage	2	4	2	8	Yes / System Pressure CLP
	Water main break	system pressure resulting in risk of backflow contamination	Alarms, AWWA Standard for repairs	2	4	3	9	Yes / System Pressure CLP
	Sustained pressure loss		Alarms, procedures	2	4	2	8	Yes / System Pressure CLP
Security	Vandalism; tampering; cybersecurity	Contamination of drinking water; damage to process equipment, loss of data and records	Intrusion alarms, locks, fencing where appropriate, server backups, paper records	3	5	1	9	No
Suppliers	Failure to receive a critical supply	Unable to provide minimum treatment requirements	Written communications/agreements, alternate suppliers	1	4	1	6	No
General	Long term impacts of climate change	Water supply shortfall (drought conditions), extreme weather events, sustained extreme temperatures, algal blooms	Monitoring, ability to haul potable water from an alternate source	2	3	3	8	No


Controlled Conditions for Critical Control Points

Controlled conditions for each critical control point identified in the summary table are described in detail in the following sets of instructions:

- 1. Filter Effluent Turbidity Critical Limit Response
- 2. Primary Disinfection Critical Limit Response
- 3. Distribution System Pressure Critical Limit Response
- 4. Secondary Disinfection Critical Limit Response

In addition to a detailed response procedure, each instructional document includes the considerations and rationale for establishing the critical limits, as well as a listing of the operational safeguards currently in place to prevent a breach of the critical limit.

9 Organizational Structure, Roles, Responsibilities and Authorities

Town of Greater Napanee Council - Owner / Operating Authority

Responsibilities

Council members represent the system Owner and have the responsibility of ensuring safe, compliant, and reliable water and wastewater utilities to serviced properties within the Town of Greater Napanee.

Council responsibilities also include public and staff safety, financial oversight, and compliance with all applicable legislation.

As the system Owner, Council is also responsible for endorsing the ongoing development of the DWQMS.

Authorities

On behalf of the electorate of the Town of Greater Napanee, Council is authorized to:

- ensure sufficient resources for the operation and maintenance of the drinking water system and DWQMS by approving utility budgets, expenditures and user fees
- provide / review / approve utilities administrative policy direction
- hire, discipline, or terminate management staff, make recommendations for drinking water system or DWQMS improvements

Chief Administrative Officer (CAO) – Owner / Operating Authority

Responsibilities

The CAO is responsible for:

- ensuring that the policies and programs of the Town are implemented
- informing and advising Council on the operation and affairs of the Town
- ensuring communication of all relevant legislated responsibilities to Council and staff
- receiving direct reports from all Town General Managers
- strategic planning
- economic development
- human resources management

Authorities

The CAO is authorized to:

- perform listed responsibilities
- delegate listed responsibilities to members of the Town management team
- communicate with Council, regulatory agencies, and public
- participate in hiring and discipline of management, staff and unionized staff
- make recommendations for system or DWQMS improvements and approve the required resources within the constraints of the Council approved budget

General Manager of Infrastructure Services – Owner / Operating Authority

Responsibilities

The General Manager of Infrastructure Services is responsible for:

- general management of the Town of Greater Napanee Infrastructure Services (Public Works and Utilities/Environmental Services)
- ensuring that the policies and programs within Infrastructure Services are implemented
- informing and advising Council on the operation and affairs of Infrastructure Services
- ensuring communication of all relevant legislated responsibilities to Council and staff
- supervision of all Infrastructure Services directors and managers
- strategic planning
- may represent Top Management on the DWQMS Management Review Committee
- evaluate and prioritize long-term rehabilitation and upgrading needs

Authorities

The General Manager of Infrastructure Services is authorized to:

- perform listed responsibilities
- delegate listed responsibilities to other Infrastructure Services directors and managers
- communicate with Owner, regulatory agencies, and public
- evaluate and prioritize long-term rehabilitation and upgrading needs
- participate in hiring and discipline of management, staff and unionized staff
- make recommendations for system or DWQMS improvements and approve the required resources within the constraints of the Council approved budget

Director of Environmental Services - Top Management

Responsibilities

The Director of Environmental Services is responsible for:

- overall supervision of the Town of Greater Napanee Utilities Department in its entirety
- oversight of Utilities department budget and long-term planning
- attending Council meetings, preparing staff reports to Council, and reporting Utilities activities to the General Manager of Infrastructure Services
- reviewing and commenting on technical reports and proposals
- evaluate proposals/tenders and select contractors, materials, and equipment
- represents Top Management on the DWQMS Management Review Committee

Authorities

The Director of Environmental Services is authorized to:

- perform listed responsibilities
- delegate listed responsibilities to other managers
- communicate with the Owner, regulatory agencies, the public and the QMS rep.
- evaluate and prioritize long-term rehabilitation and upgrading needs
- develop, approve and implement operating strategies, administrative and technical policies and procedures
- prepare, review, and approve design specifications
- participate in hiring and discipline of management and union staff
- make recommendations for system or DWQMS improvements and approve the required resources
- allocate / approve adequate resources to maintain the system and the DWQMS
- perform operational duties at all facilities if licenced to do so by the Province of Ontario

Deputy Director of Environmental Services - DWQMS Representative

Responsibilities

The responsibilities of the Deputy Director of Environmental Services include:

- completion of compliance reports, applications for approvals to regulatory authorities, and technical reports for all Town of Greater Napanee environmental services including drinking water, wastewater, storm water, waste disposal, road salt application
- maintaining communications with the Director of Environmental Services, the Operations Manager and with regulatory authorities
- reporting and acting on environmental emergencies and incidents of noncompliance
- development, administration, and maintenance of a Quality Management System in accordance with the Ontario Drinking Water Quality Management Standard
- advising General Managers, Directors and Managers on relevant environmental legislation, policies and bylaws
- receiving water and wastewater operating conditions from the Operations Manager, and as directed, reporting to the Owner, and members of the public
- preparation and revision of operational documents and record compilation
- coordination of drinking water and wastewater certification and training, and completion of training summary reports
- preparing and presenting public information materials

Authorities

The Deputy Director of Environmental Services is authorized to:

- perform the listed responsibilities
- develop, approve, and implement operating strategies / policies and procedures
- communicate with regulatory agencies and the public on behalf of the Owner
- review and provide comment on technical reports and proposals
- approve budgeted expenditures
- perform operational duties at all facilities if certified by the Province of Ontario
- remove / replace obsolete documentation or implement new documentation for any system in accordance with the Document and Records Control Procedures
- collect any operational or maintenance data required for document preparation or summary reports
- communicate/distribute educational information
- act as the DWQMS Representative

Operations Manager – Alternate DWQMS Representative

Responsibilities

The Operations Manager is responsible for ensuring safe, reliable, and compliant operation of all drinking water and wastewater systems under the responsibility of the Town of Greater Napanee, Utilities Department.

The Operations Manager assumes all responsibilities defined for the Overall Responsible Operator in O.Reg.128/03 for all drinking water and wastewater systems, as an alternate, if licensed to do so, and is also responsible for:

- approving Utilities expenditures within the constraints of the Council-approved budget
- communicating with the public, regulatory authorities, and other utilities on behalf of the Owner, maintaining communications with the Director of Environmental Services and the Deputy Director of Environmental Services
- implement all operational objectives in conjunction with the Deputy Director of Environmental Services
- conduct or coordinate maintenance activities that ensure continuous treatment process operations and cleanliness of facilities
- direct supervision and scheduling of all Utilities unionized staff, including issuing work orders, work scheduling, and providing technical advice to Operators
- direct and review (in terms of quality and safety) the activities of contractors and assigned staff
- reporting water and wastewater operating conditions to the Deputy Director of Environmental Services
- maintain valid operator certification for all facilities
- all other duties as assigned

Authorities

The Operations Manager is authorized to:

- perform the listed responsibilities
- evaluate and prioritize long-term utility needs
- prepare, review, and approve design specifications
- select contractors and equipment
- approve budgeted expenditures allocate/approve adequate resources to maintain the systems and the DWQMS
- develop, approve and implement operating strategies, administrative and technical policies and procedures
- hire, discipline or terminate supervised staff
- direct operators to make necessary process adjustments

- communicate with the public on behalf of the Owner
- evaluate and select appropriate process equipment and treatment chemicals
- make recommendations for systems or DWQMS improvements and approve the required resources
- perform operational duties at all facilities if licensed to do so by the Province of Ontario

Overall Responsible Operator - Water Treatment and/or In-ground Infrastructure

Responsibilities

Act as the Overall Responsible Operator in O.Reg.128/03 for drinking water and/or wastewater systems. The other responsibilities of the Overall Responsible Operators include:

- report and act on emergencies and incidents of non-compliance
- monitor and adjust treatment works processes, to the extent permitted by provincial legislation, to ensure compliance with relevant Provincial and Federal Regulations as well as site-specific Environmental Compliance Approvals
- ensure the maintenance of all records associated with the assigned facilities including laboratory analysis, maintenance records and operational logs in a manner compliant with Provincial and Federal Regulations and Guidelines
- monitor treatment and distribution processes, collect and monitor operating data, collect samples, perform routine analytical testing, and arrange laboratory testing in accordance with legislation
- maintain operator certification at a classification level at least equivalent to the assigned system, as well as valid operator certification for all other systems
- conduct or coordinate maintenance activities that ensure continuous treatment process operations and cleanliness of facilities
- perform OIC duties at any facility as designated and directed by management
- perform repair or replacement of water distribution and wastewater collection piping and equipment as required
- responsible for joint health and safety for assigned staff and contractors
- mandatory participation in the emergency on-call staff rotation and scheduled weekend shifts
- all other duties as assigned

Authorities

The authorities of the Overall Responsible Operator Water Treatment and/or In-ground Infrastructure include:

- perform the listed responsibilities
- within the limits of the approved budget: arrange, direct, and supervise the services provided by specialty contractors when needed
- direct other operators to make necessary process adjustments
- adjust processes based on monitoring data and professional judgement or direct other operators to make necessary process adjustments

Operator/Meter Technician

Responsibilities

The responsibilities of the Operator include:

- report and act on emergencies and incidents of non-compliance
- monitor and adjust treatment works processes, to the extent permitted by provincial legislation, to ensure compliance with relevant Provincial and Federal Regulations as well as site-specific Environmental Compliance Approvals
- ensure the maintenance of all records associated with the noted facilities including laboratory analysis, maintenance records, timesheets and operation logs in a manner compliant with Provincial and Federal Regulations and Guidelines
- perform routine maintenance and housekeeping of assigned facilities
- assist with employee training
- maintain valid operator certification for all facilities
- monitor treatment and distribution processes, collect and monitor operating data, collect samples, perform routine analytical testing arrange laboratory testing in accordance with legislation
- perform OIC duties at any facility as designated and directed by management
- may be named as alternate Overall Responsible Operator (ORO) as required, dependent on experience and licensing
- appropriately document all operational actions in accordance to applicable legislation
- mandatory participation in the emergency on-call rotation and scheduled weekend shifts
- all other duties as assigned

Authorities

The authorities of the Operator include:

- perform the listed responsibilities, install, repair, or replace any electronic, electrical, or mechanical equipment if qualified and as approved by management
- perform operational duties at all facilities if directed by management and as certified by the Province of Ontario
- adjust the process based on monitoring data and professional judgement or direct other operators to make necessary process adjustments
- order required process chemicals, lab supplies, analytical services, and equipment replacement parts as approved in budget
- performing repair/replacement of piping systems in accordance with regulatory, Greater Napanee, and other applicable industry codes of practice

Engineering Technologist

Responsibilities

The responsibilities of the Engineering Technologist include:

- customer technical representative
- responsible for engineering services
- inspection of in-ground work by contractors
- monitor and adjust treatment works processes, to the extent permitted by Provincial legislation and licenses to ensure compliance with relevant Provincial and Federal Regulations as well as site-specific Environmental Compliance Approvals
- ensure maintenance of all records associated with the noted facilities including laboratory analysis, maintenance records, timesheets and operation logs in a manner compliant with Provincial and Federal Regulations and Guidelines
- preparation, revision, and maintenance of all utilities engineering drawings in both electronic and hard copy format
- locate and document water and sewer service locations for staff, public, and for other agencies and utilities
- provide Utilities-related drawings as required by other staff, Town departments or other agencies
- issue preventive maintenance work orders according to the Utilities electronic schedule – record completed work and flag outstanding work orders for management

Authorities

The Engineering Technologist is authorized to:

- perform listed responsibilities
- make appointments with customers, contractors, and other agencies to investigate complaints, and to locate utility services
- inspect and approve in-ground water and sewer infrastructure installations and repairs
- prepare, revise, and store all Utilities engineering drawings as directed by management
- perform operational duties at all facilities if directed by management and as certified by the Province of Ontario

Utilities Office Administration and Temporary Staff

The following roles do not impact drinking water quality and therefore have no responsibilities or authorities under the scope of the DWQMS: Treasurer, Deputy Treasurer, Utilities Clerks, Accounting Administrator, as well as temporary staff including summer students and others hired to perform general labour.

10 Competencies

The following table lists the competencies required of Utilities staff whose performance may have a direct impact on drinking water quality. Check mark indicates required entry-level competency, "L" - long-term desired competency, "N/A" - not applicable to position, and roman numerals denote required class of operator certification.

	0					
Competency	Director of Env. Services	Deputy Dir. of Env. Services	Operations Manager	ORO WT and/or In-ground	Operator	Engineering Technologist
WT Certification	II	L	III	II	OIT	N/A
WD Certification	II	L	I	II	OIT	OIT
Supervisory Skills	~	~	~	~	N/A	N/A
Communications / Technical Writing	✓	~	✓	✓	✓	✓
Presentations / Training	✓	~	~	L	L	L
Budget Preparation / Long-term Cap. Planning	~	~	~	L	N/A	N/A
Staff Scheduling / Work Planning	~	~	~	~	N/A	N/A
Contract/Project Management	~	~	~	L	L	L
Regulatory Requirements	~	~	~	~	~	L
Emergency Procedures	~	~	~	~	~	L
Water Treatment Unit Processes	~	~	~	~	~	L
Process troubleshooting	✓	~	~	~	L	N/A
Distribution piping installation / repair	~	~	~	~	L	L
Laboratory techniques, sampling / preservation	N/A	N/A	~	~	~	L
Pumps and valves (application / maintenance)	L	L	~	~	L	L
Electrical instrumentation / controls	N/A	N/A	L	L	L	L
Interpreting plans / blue-prints	✓	~	✓	✓	L	✓
Confined space entry	N/A	N/A	~	~	L	L
Computer - spreadsheets and word processing	~	~	~	~	~	~
Computer aided design	N/A	N/A	L	L	L	~
SCADA	L	L	L	L	L	L

Satisfying Competencies

Competency requirements for Utilities staff are satisfied by the following:

- Candidates considered for hire may be requested to submit proof of completing relevant post-secondary education and must demonstrate technical knowledge and communications skills to an interview panel.
- New employees undergo comprehensive on-the-job training at all facilities, conducted and documented by experienced, competent staff. Training documentation (GEN-F17, GEN-F18 & GEN-F19) is signed by the employee and trainer, confirming understanding of the training provided. Training files are maintained for all Utilities staff.
- All employees receive ongoing training in various subject areas including safety, treatment process operations, contingency plans, regulatory requirements, equipment operation, and new technologies. The training is provided by experienced staff, technical experts, or contracted professional trainers. Training provision and certification levels meet or exceed those required by legislation. Applicable training sessions communicate the relevance of staff duties to safe drinking water.
- The Town of Greater Napanee provides incentive for staff wishing to upgrade their operating certification as remuneration increases with operator certification level. The Town pays directly for certification examinations and certificate renewal.
- The Town provides funding to staff wishing to independently upgrade their education, provided the training is related to utility duties.

11 Personnel Coverage

The Town of Greater Napanee, Infrastructure Services Department employs certified drinking water system operators, many of whom have operator certification for water treatment, water distribution, wastewater treatment, and wastewater collection facilities. Many of those certified operators are employed according to the terms and conditions of the Collective Agreement between the Town of Greater Napanee and the International Brotherhood of Electrical Workers, Local 636.

A Letter of Understanding between the Union and the Town of Greater Napanee guarantees that the Union waives its right to strike and the Town of Greater Napanee waives its right to lock-out. The Letter of Understanding also provides an alternate dispute resolution process in the event that bargaining under the collective agreement fails.

	Weekdays (0730hr – 1600hr)*	After Hours (all days)	Weekends / Holidays
Operator (full-time)	Х		
Additional Operator(s); Electrician(s); Overall Responsible Operators (ORO) available as needed	х		
On-call Operator (as needed)		x	x

Summary Table of WTP Personnel Coverage

* Specified times are typical, however 8-hour day shift start and stop times may vary.

In the event of the absence of the designated ORO's, alternates are available as necessary.

A.L. Dafoe Drinking Water System

An Operator attends the A.L. Dafoe Purification Plant facility on a full-time basis, typically eight hours per day, five days per week. The Operator is supported as needed by another Operator.

Operation and maintenance of the A.L. Dafoe Water Distribution System is normally conducted as needed by the Overall Responsible Operator – In-ground Infrastructure supported by additional Operators as needed.

Under abnormal circumstances (i.e. emergencies), additional assistance is available from any of the other certified Operators assigned to other facilities, as directed by management.

Sandhurst Shores Drinking Water System

An Operator attends the Sandhurst Shores Water Treatment Plant facility for approximately one hour per day, five days per week. The Operator is supported as needed by another Operator.

Operation and maintenance of the Sandhurst Shores Distribution System is normally conducted as needed by the Overall Responsible Operator – In-ground Infrastructure supported by additional Operators as needed.

Under abnormal circumstances (i.e. emergencies), additional assistance is available from any of the other certified operators assigned to other facilities, as directed by management.

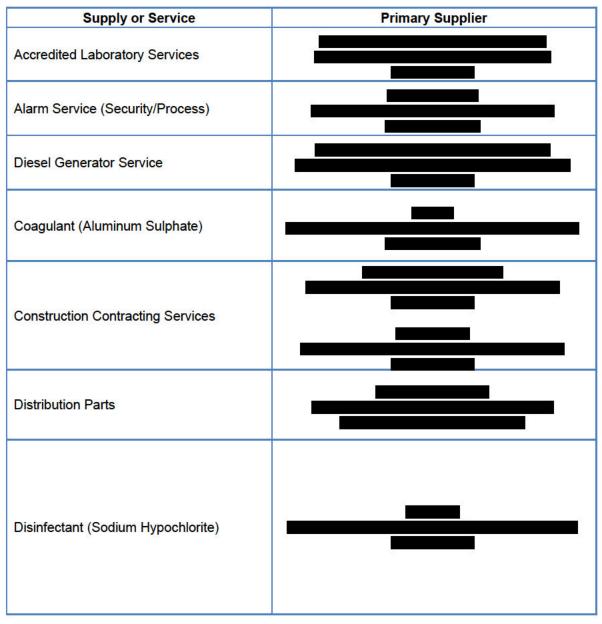
Weekend & Holiday Shifts

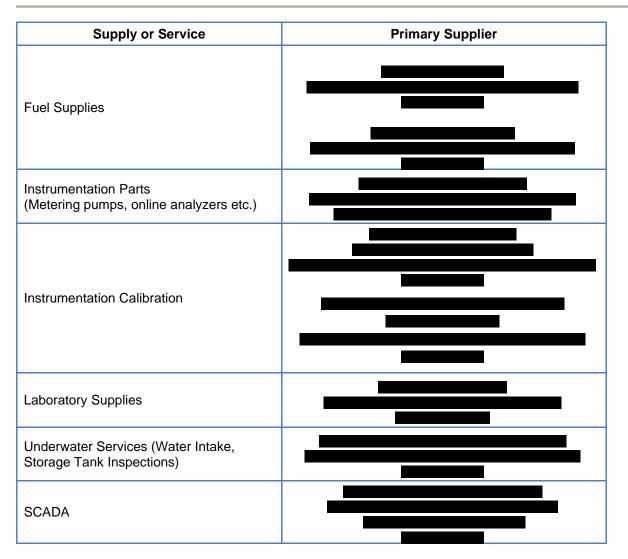
Weekend and holiday shifts, as well as off-hours duties that may arise due to alarms, customer complaints or emergencies, are covered by the On-call Operator. All the unionized staff with valid drinking water system certification take turns as the designated On-call Operator according to a weekly rotating schedule. In addition to monitoring the A.L. Dafoe Drinking Water System, the On-call Operator is responsible for monitoring the Sandhurst Shores Drinking Water System and the Napanee Water Pollution Control Plant and Wastewater Collection system.

Alarm System

All drinking water & wastewater facilities are monitored by an alarm system, which transmits a signal to a contracted security alarm service when alarm conditions are detected. The security service dispatcher then notifies the On-call Operator by telephone. All certified operators are issued cellular telephones. The On-call Operator must be available by phone from one hour prior to the end of a day shift through to one hour after the beginning of the following day shift. Response to critical alarms must be within 30 minutes of receiving the call, in accordance with the Collective Agreement. Call outs are recorded on Alarm/Call Response Records.

Rationale


One operator is capable of completing all minimal weekend monitoring tasks at the Water and Wastewater Treatment facilities during routine operations. Similarly, based on past experience, most alarm conditions can be addressed by one operator. If circumstances arise where additional staff is required, the on-call operator may request the assistance of any of the other off-duty operators.


The required 30-minute emergency response time is considered reasonable based on the extent of alarm coverage, conservative alarm set points, and the multiple monitoring and treatment barriers in place that prevent risk to public health.

12 DWQMS Communications

The procedure for communicating aspects of the DWQMS specifically is contained within the Communications Procedure (GEN-P9).

13 Essential Supplies and Services

Quality of Supplier Products and Services

Assurance of the quality of essential supplies and services is achieved through documentation of applicable accreditation, licenses and certifications. The Town of Greater Napanee, Infrastructure Services Department requires that suppliers of process chemicals verify the quality of each product through documented certification of chemical analysis. A mailing provides an overview of the Town of Greater Napanee DWQMS with specific reference to communications and supplier participation. The detailed procedure related to essential services and supplies is entitled Quality of Essential Supplies and Services (GEN-P10).

Review and Provision of Infrastructure and Resources 14

The detailed procedure for review and provision of infrastructure and resources is in the Infrastructure Review Procedure (GEN-P8).

Infrastructure Maintenance, Rehabilitation and Renewal 15

Infrastructure maintenance, rehabilitation, and renewal are addressed by the following:

Planned Maintenance: Planned maintenance is scheduled using a preventative maintenance software program stored on the central office computer server. Server files are backed up daily. Scheduled tasks are typically defined by manufacturer's literature and revised (or created) as needed according to operator experience / observations. Planned maintenance tasks are communicated to the person responsible by work orders from the Operations Manager. Completed work orders are reviewed and signed by the Operations Manager or other Management.

Unplanned Maintenance: Unplanned maintenance tasks result from equipment malfunction or breakage. Unplanned maintenance is authorized by the Director of Environmental Services, Deputy Director of Environmental Services, Utilities Operations Manager, or an Operator in Charge. An Operator responds to unplanned maintenance during normal working hours while the On-Call Operator responds during off-hours. Documentation of unplanned maintenance tasks are recorded in the appropriate logbook and may be recorded on work orders or other forms as required.

Measures to prepare for and expedite unplanned maintenance include equipment redundancy (back-up units), spare parts inventory, availability of updated plans / water and sewer atlas, as well as documented repair and safety procedures.

Renewal / Capital Upgrades: Replacement of aging fixed heavy equipment, as well as upgrades, expansions, and in-ground systems improvements are planned by the Operations Manager, the Director of Environmental Services, the Deputy Director of Environmental Services and/or the Director of Capital Works, often with support and input by the appropriate Overall Responsible Operator. All renewal / capital upgrade expenses are identified in the budget approved by the Town of Greater Napanee Council.

Where practical, replacement of aging in-ground infrastructure is coordinated with road reconstruction activity conducted by the Town of Greater Napanee or the County of Lennox and Addington.

Long-Term Infrastructure Upgrade Forecast: Five-year department goals are identified below. Priorities, dates, and specifics are subject to change.

	Infrastructure Forecasting – Five Year				
Category	Description	Estimated Date of Construction			
WT	Liner replacement in the Large Raw Water Reservoir (Golf Course Lane & Cty Road 8)	2023			
WD	East St. from Dundas St. to North of Isabella St.	2023			
WD	John St. from Thomas St. to Mill St. (incl. Storm outfall to River)	2024			
WD	Thomas St. from Belleville Rd. to Simcoe St.	2025			
WD	Dundas St., Phase 4 – Adelphi St. to East of CN Tracks	2025			
WD	Mill St. from Napier St. to Hessford St.	2026			
WD	Hessford St. from Dundas St. to Water St.	2026			
WD	Water St. from Union St. to Hessford St.	2026			
WD	Bridge St. from Richard St. to York St.	2027			
WD	Dundas St. from Hessford St. to Cherrywood Pkwy.	2028			

Infrastructure maintenance, rehabilitation, and renewal are described in greater detail in the Maintenance Procedure (GEN-P3).

16 Sampling and Monitoring

The Town of Greater Napanee Utilities Department follows a sampling program for all Drinking Water Systems, based on legislative requirements. This program is described in detail in the procedure entitled Drinking Water Sampling, Monitoring and Analysis (NAP-DW-P1 and SHS-P1).

Throughout any maintenance project undertaken within the distribution system, operators sample according to the AWWA Standards for Disinfecting Water Mains.

Specific sampling and monitoring procedures are established for operating the A.L. Dafoe Purification Plant or the Sandhurst Shores Water Treatment Plant under abnormal circumstances. A detailed set of instructions for sampling and monitoring in response to adverse water quality is available in the facility Operation and Maintenance Manuals and on the electronic server.

Laboratory results are acquired from in-house analyses, as well as from a selected accredited laboratory. In-house laboratory results are entered into electronic spreadsheets and stored on the server. The spreadsheets can be viewed by all

Operations staff and Management. Bacteriological and chemical results from the accredited laboratory are emailed to the Operations Manager, the duty Operator(s) and the Deputy Director of Environmental Services.

Copies of bacteriological and chemical analytical results are available to members of the public at the Greater Napanee Administration Office by request. In-house laboratory results may also be provided upon request. All analytical results are summarized in tables at the end of the calendar year and are discussed in the Annual Reports. These reports are also made available to any interested member of the public upon request. Annual Reports are also posted on the Town of Greater Napanee website.

17 Measurement and Recording Equipment Calibration and Maintenance

Methods of measurement and recording equipment calibration and maintenance are described in detail in the procedure GEN-P5.

18 Emergency Management

The procedure entitled Emergency Conditions (GEN-P11) outlines the conditions within the drinking water systems that are considered to be major emergencies. This procedure also lists those persons responsible for initiating the response and recovery measures, as well as the process to be followed as emergencies escalate.

Specific instructions for responding to emergencies, including emergency situations that have the potential to result in acute drinking water health risks, are included in the plant and distribution system operations manuals. Each operator is required to review the written emergency procedures annually. When practical, emergency procedures are tested.

Emergency Contact List

Town of Greater Napanee - Contacts					
General Manager of Infrastructure Services					
Director of Environmental Services					
Deputy Director of Environmental Services					
Utilities Operations Manager					
Overall Responsible Operator Water Treatment					
Overall Responsible Operator In-ground Infrastructure					
Overall Responsible Operator Wastewater Treatment					
Town of Greater Napanee	613-354-3351 (day) 1-800-342-6442 (after hours)				
Emergency Management Co-ordinator					
Ministry of the Environment, Conserv	ation and Parks - Contacts				
District Office - Kingston	613-549-4000				
Spill Action Centre	1-800-268-6060				
Kingston, Frontenac, Lennox and Ado	lington Public Health Unit - Contacts				
Local Office - Napanee	613-354-3357 (day) 1-800-267-7875 (after hours)				

19 Internal Audits

Internal Audits are conducted at a minimum of once every calendar year, according to procedure GEN-P6 to determine the effectiveness of the DWQMS, and to explore opportunities for improvement. Internal Audits in addition to Third-party Audits are mechanisms used to fulfill the "check" and "improve" imperatives of the quality management system.

20 Management Reviews

Management reviews are conducted at a minimum of once every calendar year, according to procedure GEN-P7, following the internal audit.

21 Continual Improvement

Continual improvement can be described as initiatives that can be triggered from Internal or External Audits, Management Reviews, Customer calls or complaints, Staff meetings, compliance inspections, adverse water quality incidents or health & safety inspections, in accordance with GEN-P12. Improvements are to be detailed on Continual Improvement Report(s) (GEN-F13) and must be verified and signed off by the designated DWQMS Representative or other employee(s) who have been designated. Continual Improvement Report(s) are logged within an electronic spreadsheet entitled CIR Progress Tracker (GEN-F15).